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Abstract
Quantitative MRI (qMRI) probes the microstructural properties of the central
nervous system (CNS) by providing biophysical measures of tissue charact-
eristics. In this work, we aimed to (i) identify qMRI measures that distinguish
histological lesion types in postmortem multiple sclerosis (MS) brains,
especially the remyelinated ones; and to (ii) investigate the relationship
between those measures and quantitative histological markers of myelin,
axons, and astrocytes in the same experimental setting. Three fixed MS whole
brains were imaged with qMRI at 3T to obtain magnetization transfer ratio
(MTR), myelin water fraction (MWF), quantitative T1 (qT1), quantitative
susceptibility mapping (QSM), fractional anisotropy (FA) and radial diff-
usivity (RD) maps. The identification of lesion types (active, inactive, chronic
active, or remyelinated) and quantification of tissue components were per-
formed using histological staining methods as well as immunohistochemistry
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and immunofluorescence. Pairwise logistic and LASSO regression models were
used to identify the best qMRI discriminators of lesion types. The association
between qMRI and quantitative histological measures was performed using
Spearman’s correlations and linear mixed-effect models. We identified a total
of 65 lesions. MTR and MWF best predicted the chance of a lesion to be
remyelinated, whereas RD and QSM were useful in the discrimination of
active lesions. The measurement of microstructural properties through qMRI
did not show any difference between chronic active and inactive lesions. MWF
and RD were associated with myelin content in both lesions and normal-
appearing white matter (NAWM), FA was the measure most associated with
axon content in both locations, while MWF was associated with astrocyte
immunoreactivity only in lesions. Moreover, we provided evidence of extensive
astrogliosis in remyelinated lesions. Our study provides new information on
the discriminative power of qMRI in differentiating MS lesions -especially
remyelinated ones- as well as on the relative association between multiple
qMRI measures and myelin, axon and astrocytes.
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1 | INTRODUCTION

Multiple sclerosis (MS) is a chronic, immune-mediated
and degenerative disease of the central nervous system,
which affects almost three million people worldwide and
represents the primary cause of nontraumatic disability
in young adults.1

Neuropathological investigations have provided impor-
tant contributions to our understanding of the disease,2–6

but also to the development of pathologically meaningful
imaging biomarkers for inflammation and demyelination.7–9

MS lesions are heterogeneous, show a complex cellu-
larity and evolve over time10; thus, histologically, a spec-
trum of focal lesions can be identified11: (i) active, that is,
lesions containing numerous immune cells (monocyte-
derived macrophages and phagocytic microglia);
(ii) chronic active (or mixed active/inactive or smoldering
lesions), that is, lesions showing a rim of activated micro-
glia/macrophages at the lesion edge and loss of myelin/
axons in the center; and (iii) inactive, that is, hypocellular
and demyelinated. In addition, remyelinated lesions can
be identified histologically and are characterized by
shorter and thinner myelin sheaths replacing the
destroyed myelin.12,13 The regenerative process often
involves only part of the lesion, mostly at its border, but
sometimes it leads to a complete remyelination and thus
to the formation of the so-called ‘shadow plaques’.14

To date, only some of the above-mentioned histo-
logical lesion types have been firmly associated to
qualitative magnetic resonance imaging (MRI) bio-
markers. Indeed, active lesions with significant blood–
brain barrier disruption can be identified through
gadolinium-enhancement in T1-weighted images, and
at least a fraction of chronic active lesions show a rim
of increased susceptibility that can be detected with

susceptibility-weighted imaging,15 phase imaging9 or
quantitative susceptibility mapping (QSM).16,17 On the
other hand, there are no specific imaging correlates for
inactive and remyelinated lesions, since the absence of
inflammatory activity as measured with gadolinium-
enhancement or paramagnetic rim lesions (PRL) does
not necessarily identify a lesion as inactive or remyeli-
nated. Previous studies have already evidenced the
potential role of (semi)quantitative MRI (i.e., MTR) in
discriminating remyelinated lesions.18–20

Hence, the goal of this work was to identify quantita-
tive MRI measures that disentangle the histopathological
complexity of the MS focal pathology in postmortem
human brains, and especially help identifying remyeli-
nated lesions.

Quantitative MRI (qMRI) techniques such as quanti-
tative T1 (qT1), myelin water imaging (MWI), magneti-
zation transfer (MT), and diffusion imaging provide
measures that are associated to axon and myelin integ-
rity, iron content, and cellularity in the CNS.21 Nonethe-
less, all these metrics are sensitive to more than one tissue
component and their relative relationship to specific tis-
sue components (i.e., myelin, axons, cells) has not been
comprehensively elucidated in the same experimental set-
ting. Indeed, although studies have been performed to
compare some quantitative measures, those are difficult
to compare to each other due to the diversity of experi-
mental conditions.22,23

In this study, our objectives were: (i) to identify the
pattern of qMRI measures that would allow to differenti-
ate histological lesion types in postmortem brains of MS
patients and (ii) to investigate the relationship between
those qMRI measures and quantitative histological mea-
sures of myelin, axons, and astrocytes in the same experi-
mental setting.
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2 | METHODS

2.1 | Specimen preparation and experimental
setup

This study was approved by the ethical review committee
of the University Medical Center Göttingen. Three whole
brains from one female and two male MS patients were
provided by the German MS Brain Bank of the Compe-
tence Network Multiple Sclerosis (KKNMS). These
brains were the same used in our previous study by Rah-
manzadeh et al.24 The ages of the patients were 51, 58,
and 66 years. The autopsies were performed 24 h post-
mortem at the latest and the brains transferred directly to
4% neutral buffered formaldehyde solution. One patient
had secondary progressive MS and two suffered from
relapsing–remitting MS. Documents on the clinical
course of each patient were obtained from the respective
attending neurologist and the family doctor (Table 1).

MRI of the whole brains was performed 3–12 months
after death. Approximately 1 week prior to scanning, the
brains were placed into a custom-built and MRI-
compatible container25–27 and immersed in Fomblin®

perfluoropolyether (Solvay Specialty Polymers USA,
LLC, West Deptford, NJ, USA), a liquid-phase proton-
free fluorocarbon which lacks any signal in hydrogen-
based MRI.28 Since air bubbles produce relevant
susceptibility artifacts, the bubbles were removed before
imaging by suction using a vacuum pump. After this
multi-step preparation process, the whole brains were
imaged on a clinical 3T whole-body MR system
(Magnetom Prisma, Siemens Healthineers, Erlangen,
Germany). We employed the built-in body coil for radio-
frequency (RF) transmission; for RF reception we used
the standard 20-channel phased-array head and neck coil
supplied by the manufacturer.

2.2 | Ex vivo MRI protocol and image
processing

Brain images were acquired with the following sequences,
adapted to ex vivo conditions and capabilities, since due
to natural tissue decomposition but also to chemical fixa-
tion the postmortem tissue’s MRI properties are to a cer-
tain extent different from those found in vivo29,30:

(i) MP2RAGE (670 μm isotropic, TR = 5 s, TE = 1.78 ms,
TI1 = 194 ms, and TI2 = 2500 ms) to obtain quantitative
T1 maps (qT1)31,32; (ii) Fast Acquisition with Spiral
Trajectory and adiabatic T2prep (FAST-T2) (1000 μm iso-
tropic, spiral TR/TE = 9.3 ms/0.94 ms, six T2prep times of
[0, 7.5, 17.5, 67.5, 147.5, 307.5] ms) to assess myelin water
fraction (MWF), using the cut-off of 20 ms to separate the
short and the long T2 components, as suggested by Nguyen
et al.33; (iii) segmented 3D-EPI (330 μm isotropic,
TR = 65 ms, TE = 35 ms, ETL = 13, bandwidth 394 Hz/
Pixel) to enable QSM34; (iv) proton density weighted
(TR = 25 ms, flip angle 5�), and MT prepared
(TR = 25 ms, flip angle 5�) RF-spoiled 3D-GRE of
identical geometry (570 μm isotropic) to allow MTR map
calculation35; (v) diffusion tensor imaging: Brain 1: resolu-
tion 1.4 mm isotropic, b-value = 0/1400/2000/4000 s/mm2:
TE = 93.0 ms; δ = 28.9 ms; Δ = 42.9 ms; Brain 2: resolu-
tion 1.5 mm isotropic, b-value = 0/1650/2350/4650 s/mm2,
TE = 99.0 ms, δ = 31.9 ms, Δ = 45.9 ms; Brain 3: resolu-
tion 1.3 mm isotropic, b-value 0/1350/2650/4000 s/mm2,
TE = 80.0 ms; δ = 22.3 ms; Δ = 36.3 ms. Diffusion
images were denoised36 and fractional anisotropy (FA) and
radial diffusivity (RD) maps were computed (Figure S1).

2.3 | Individualized cutting box and
sectioning

In order to ease the registration of the MRI to the histol-
ogy slices, we designed and 3D-printed an individualized
cutting box based on the MRI for each brain, as reported
in references [25,26] (Figure 1).

Brain slices were then photographed and the 3D echo
planar imaging (3D EPI) images manually registered to
the photographs by means of ITK-SNAP.37

After the cutting process, we analyzed the slab-matched
3D EPI images to identify potential regions of interest
(focal abnormalities in the white matter), which were then
dissected and analyzed histologically (Figure S2).

2.4 | Histopathological analysis

Tissue blocks were embedded in paraffin and slices
of 4 μm thickness were stained for myelin (Luxol
Fast Blue/Periodic-Acid Schiff (LFB/PAS)), for axons
(Bielschowsky silver impregnation), for iron (DAB-
enhanced Turnbull staining), as well as using hematoxy-
lin/eosin (H&E).

Immunohistochemical staining was performed using
an avidin–biotin technique. Primary antibodies com-
prised anti–myelin basic protein (anti-MBP; Dako,
Glostrup, Denmark for myelin) and anti-CR3/43 (human
HLA-DP, clone CR3/43, for MHC-II expressing micro-
glia/macrophages). After incubation with the primary
antibody (applied at the dilutions indicated by the sup-
plier and incubated overnight at 4�C), antibody binding

TABLE 1 Patients’ characteristics

Patient Age Sex
Disease
course

Disease
duration EDSS

1 51 F RRMS 8 years 4

2 58 M SPMS 23 years 8

3 66 M RRMS 17 years 2,5

Abbreviations: EDSS, Expanded Disability Status Scale; F, female; M, male;
RRMS, relapsing–remitting MS; SPMS, secondary progressive MS.
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was visualized using biotinylated secondary antibodies,
peroxidase-conjugated avidin, and DAB (Sigma-
Aldrich). Double-labeling immunohistochemistry was
performed combining DAB and Fast Blue using an
alkaline phosphatase-conjugated secondary antibody
(Dako, 1:50). Hematoxylin was used as nuclear counter-
stain. Double immunofluorescence immunohisto-
chemistry was performed using primary antibodies
directed against myelin basic protein and neurofilament
proteins (cocktail of anti-NF200 [Sigma Aldrich,
Missouri, USA]), SMI31, SMI32, and SMI311
(Sternberger monoclonals incorporated, Maryland,
USA) or astrocytes (cocktail of antibodies against glial
fibrillary acidic protein; SYSY, Göttingen, Germany,
and Aldh1l1 (aldehyde dehydrogenase 1 family member
L1, Merck, Darmstadt, Germany)). Alexa FluorVR488
(Jackson ImmunoResearch Laboratories, Inc.) or
CyTM3 (ImmunoResearch Laboratories, Inc.) coupled
anti-mouse and anti-rabbit Ig antibodies were used
as secondary antibodies. DAPI (40,6-diamidino-2-
phenylindol) staining was used for cell nuclei staining.

After histology/IHC, the sections were scanned auto-
matically by a computer-directed microscope stage
(Olympus VS120 Soft Imaging Solutions) with a 20�
objective magnification for further investigations. Digital
processing of slide images was performed using an open
microscopy OMERO server (version 5.6.3).

2.5 | Staging of MS lesions

Lesion staging was performed using LFB/PAS staining
and immunohistochemistry for myelin (MBP and
BCAS1) and activated microglia/macrophages (human
HLA-DP, clone CR3/43), was based on the recent classi-
fication system according to Kuhlmann et al.11 and
included the category of lesion with extensive remyelina-
tion (shadow plaques), which were defined as proposed

by Patrikios et al. (presence of remyelination in >60% of
the plaque area).12

Histological image analysis was carried out by identi-
fying the respective regions of interest (ROI) manually,
that is, white matter lesions and NAWM. NAWM areas
were defined as white matter without or with only sparse
microglia activation and, if possible, a minimum distance
of 0.5 cm from white matter or cortical lesions.

Lesions were classified into four different groups
(active, chronic active, inactive, and remyelinated)
based on the detection of focal areas of demyelination/
remyelination as well as the presence, density and locali-
zation of activated microglia/macrophage and ongoing
demyelinating activity. Remyelination was characterized
in LFB/PAS staining and MBP and/or BCAS1 immuno-
histochemistry by subtle myelin pallor when compared to
the surrounding NAWM, and absence of macrophages
with early myelin degradation products. As mentioned
above, we included in the category of remyelinated
lesions only lesions with areas of remyelination covering
at least 60% of their surface.12 Myelin regeneration can
be found in inactive, chronic active or active lesion types;
in case of classification as “remyelinated,” these lesions
were excluded from the other three categories in our
analysis.

All lesions were assessed and classified by two board-
certified neuropathologists (EB, CS).

2.6 | MRI-histopathology analysis

We automatically registered all the images to the slab-
matched 3D EPI images through Elastix38,39 using an
affine transformation.

White matter lesions (WML) accurately selected on
histology and areas of NAWM in their vicinity were eas-
ily identified on the corresponding 3D EPI images and
manually segmented, on two dimensions, on the same

F I GURE 1 Three-
dimensional (3D) model of an
individualized cutting box (A), 3D
print of the same model (B) and
intermediate stage of the cutting
process (C).

4 of 13 GALBUSERA ET AL.
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spatial plane as the histology section, by using
ITK-SNAP 3.6.037 (Figure S3). The segmentation mask
was thereafter checked for quality and consistency on 3D
fluid-attenuated inversion recovery (FLAIR) images. All
six qMRI scans were registered to the 3D EPI, average
intensity values were then computed for each region of
interest. We considered the full lesion surface without dis-
tinguishing lesion core from lesion edge.

2.7 | Quantitative histology

We performed the correlation of MRI data with quanti-
tative histology in a randomly selected subset of lesions
and in their corresponding NAWM regions (see also the
result section).

Quantification of histochemical (LFB), immunohisto-
chemical (anti-MBP) and immunofluorescence (anti-
MBP-, anti-NF- and anti-astrocyte cocktail) staining was
performed using in-house methods (JF, RG). Specifically,
to analyze MBP, color deconvolution (scikit-image,
v0.18.1) of the DAB signal was performed applying the
same deconvolution matrix to all images using scikit’s
predefined RGB to HED deconvolution matrix. LFB
color separation was performed by creating an individual
color separation matrix for each image manually. The
stain separation matrix was defined by annotating the
LFB blue stain vector and the hematoxylin blue stain
vector for each image. The third vector was defined as
the orthogonal vector of the first two. For each ROI, we
extracted the mean intensity of color-deconvoluted or
immunofluorescence images.

2.8 | Statistical analysis

We tested two main H0 hypotheses: (H0-1) qMRI mea-
sures sensitive to myelin, axons, cells and tissue structure/
anisotropy cannot differentiate histologically defined
lesion types and (H0-2) measures derived from qMRI do
not relate to myelin, axon, and cell content as measured
histologically. For both hypotheses, each qMRI measure
was considered independent from the others because they
were partially correlated (i.e., we performed a single-
model analysis for each qMRI parameter).

To confute H0-1, we performed pairwise logistic
regression model using MRI measures as independent
variables and histopathological lesion types as depen-
dent variables. We used (i) the Akaike’s Information
Criterion (AIC) to assess the quality of the model fit
(the lower the value, the better the data fit the model);
and (ii) the c-statistics to assess the agreement between
an observed response and a predictor. A c-value of
1 indicates perfect agreement between predicted and
observed response. The results were then confirmed
assessing all MRI markers together in a LASSO regres-
sion model.

In order to visualize the discriminative capabilities
of qMRI regarding histological lesion types, we used a
t-distributed stochastic neighbor embedding - t-SNE
plot-, a statistical algorithm which embeds high dimen-
sion data into lower dimensional data enabling their
visualization.

(A)

(B)

(C)

(D)

F I GURE 2 Examples of histopathological lesion types and their
correspondent quantitative MRI (qMRI) (MTR, magnetization transfer
ratio; MWF, myelin water fraction; QSM, quantitative susceptibility
mapping; qT1, quantitative T1; FA, fractional anisotropy; RD, radial
diffusivity). (A) Inactive lesion, not showing presence of inflammatory
cells; (B) Active lesion, containing numerous microglia/macrophages
also in the center; (C) Chronic active lesion, showing presence of
activated microglia/macrophages at the edge; (D) Remyelinated lesion
(shadow plaque), showing uniformly pale myelin stain across the whole
lesion area.
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To confute H0-2, we first used Spearman’s rank-order
correlation between the data obtained from quantitative
histology (quantification of myelin, axon, and astrocyte
content in selected ROI, see also the paragraph quantita-
tive histology) and the corresponding qMRI measures
(i.e., the average of the signal intensity of the correspond-
ing ROI on each MRI sequence).

We further investigated the association between tissue
components and MRI through linear mixed-effect models
with brains as random effect, to consider the possible lack
of independency of lesions belonging to the same brain.
In a first model, we assessed whether the association
between qMRI and histological measure differs accord-
ing to the sampling location (lesion vs. NAWM). The
second model estimates the association between the MRI
and histological measure in lesions and indicates if this
association differs in the NAWM.

Statistical analyses were performed in R (version
3.6.3), α was set at 0.05, two-tailed.

3 | RESULTS

We identified on MRI and characterized histologically a
total of 65 lesions in three brains: 12 inactive, 35 chronic
active, 9 active and 9 (extensively) remyelinated lesions
(Figure 2).

Active lesions—a lesion type that is uncommon in
brain autopsies —were found in only one brain. The other
lesion categories were instead represented in all the brains.

3.1 | Association between histological lesion
type and qMRI measures

An overview of the behavior of the quantitative MRI
parameters in the different lesion types is given in

TABLE 2 Pairwise logistic regression models (without brain as covariate). Each line presents the main results of a separate model.

qMRI Comparisons Coef se OR p c AIC N

MTR Remyelinated vs. chronic active/inactive/active 0.45 0.14 1.57 <0.01 0.83 40.45 65

MWF Remyelinated vs. chronic active/inactive/active 0.24 0.08 1.27 <0.01 0.78 43.82 65

qT1 Remyelinated vs. chronic active/inactive/active �0.02 0.01 0.98 <0.01 0.83 43.22 65

QSM Remyelinated vs. chronic active/inactive/active �0.03 0.02 0.97 0.0449 0.75 51.28 65

FA Remyelinated vs. chronic active/inactive/active �0.81 5.62 0.45 0.8858 0.48 56.26 65

RD Remyelinated vs. chronic active/inactive/active �27.91 9.33 0.00 <0.01 0.83 42.54 65

MTR Inactive vs. chronic active 0.01 0.13 1.01 0.9311 0.49 57.39 47

MWF Inactive vs. chronic active �0.01 0.08 0.99 0.9039 0.49 57.39 47

qT1 Inactive vs. chronic active 0.00 0.00 1.00 0.4278 0.58 56.78 47

QSM Inactive vs. chronic active 0.00 0.01 1.00 0.7462 0.57 57.30 47

FA Inactive vs. chronic active 1.62 4.73 5.05 0.7320 0.51 57.29 47

RD Inactive vs. chronic active 1.80 6.02 6.06 0.7646 0.54 57.31 47

MTR Active vs. remyelinated/chronic active/inactive 0.09 0.10 1.10 0.3540 0.64 55.45 65

MWF Active vs. remyelinated/chronic active/inactive 0.00 0.07 1.00 0.9725 0.45 56.28 65

qT1 Active vs. remyelinated/chronic active/inactive �0.01 0.01 0.99 0.0216 0.79 48.08 65

QSM Active vs. remyelinated/chronic active/inactive 0.03 0.01 1.03 0.0212 0.75 50.47 65

FA Active vs. remyelinated/chronic active/inactive �10.78 7.19 0.00 0.1341 0.65 53.55 65

RD Active vs. remyelinated/chronic active/inactive �18.68 7.63 0.00 0.0144 0.81 48.53 65

Abbreviations: AIC, Akaike’s information criterion; c, c-statistics; Coef, coefficient; FA, fractional anisotropy; MTR, magnetization transfer ratio; MWF, myelin water
fraction; N, number of samples; OR, odds ratio; QSM, quantitative susceptibility mapping; qT1, quantitative T1; RD, radial diffusivity.

F I GURE 3 T-distributed stochastic neighbor embedding—t-SNE
plot-. Remyelinated lesions show different degree of damage and some
of them resemble normal-appearing white matter (NAWM). On the
other hand, chronic active and inactive lesions are not separable from
each other. Active lesions appear to be in between chronic active/
inactive lesions and NAWM.
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Figure S4. Pairwise logistic regression showed that MTR,
RD, qT1, and MWF differentiated between (i) extensive
remyelinated and (ii) active, chronic active, and inactive
lesions in this order (MTR: AIC = 40.45, c = 0.83,
p < 0.01, RD: AIC = 42.54, c = 0.83, p < 0.01, qT1:
AIC = 43.22, c = 0.83, p < 0.01, MWF: AIC 43.82, c
0.78, p < 0.01). (Table 2) In the LASSO model, MTR
and MWF were the strongest predictors of being a
remyelinated lesions.

To distinguish active lesions from all other lesion
types, qT1, RD, and QSM proved to be the discriminat-
ing metrics (qT1: AIC = 48.08, c = 0.79, p < 0.05; RD:
AIC = 48.53, c = 0.81, p < 0.05; QSM: AIC = 50.47,

c = 0.75, p < 0.05) (Table 2). However, when assessing
all MRI markers in a LASSO regression model, the influ-
ence of qT1 disappeared.

On the other hand, both the model fit and the concor-
dance seemed to be poor for the separation of inactive
from chronic active lesions (Table 2).

When experimental conditions were considered
(i.e. inclusion of the brain as random effect in the
model), obtained results were very similar for all
models with the exception of the model differenti-
ating active lesions from other lesions, where also
MTR and MWF appeared discriminative and QSM
not anymore.

F I GURE 4 Spearman
correlation between quantitative
MRI metrics and mean myelin
basic protein (MBP)
(immunohistochemistry, IHC) and
Luxol Fast Blue (LFB). Legend
dots colors: Black = normal-
appearing white matter (NAWM);
red = active; green = chronic
active; blue = inactive; light
blue = remyelinated.
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A visualization of the discriminative capabilities of
qMRI regarding histological lesion types was performed
using a t-SNE-plot in Figure 3.

3.2 | Correlation of MRI measures with
quantitative histology

For the correlation of MRI parameters with quantitative
histology we randomly selected a subset of n = 43 lesions
(9 extensively-remyelinated, 10 inactive, 20 chronic-active
and 4 active) and the corresponding n = 43 regions
of NAWM.

3.2.1 | Myelin content

Correlation analysis showed that qT1 correlated best
with myelin content quantified with MBP (rho = �0.79,
p < 0.01), followed by RD (rho = �0.78, p < 0.01),
MWF (rho = 0.69, p < 0.01), MTR (rho = �0.67,
p < 0.01) and QSM (rho = �0.58, p < 0.01) (Figure 4).

On the other hand, linear mixed-effect models
showed that MTR, MWF, and RD were all associ-
ated with MBP-myelin content in the lesion, but only
MWF and RD showed a similar association with
MBP-myelin content in both lesions and NAWM
(Table S1).

F I GURE 5 Spearman
correlation between quantitative
MRI metrics and mean
neurofilament cocktail
(NF) immunofluorescence
(IF) and mean GFAP cocktail
immunofluorescence (IF). Legend
dots colors: Black = normal-
appearing white matter (NAWM);
red = active; green = chronic
active; blue = inactive; light
blue = remyelinated.
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For the evaluation of myelin content with LFB stain-
ing, we could consider 23 lesions (3 remyelinated, 6 inac-
tive, 12 chronic active, 2 active lesions) and 25 NAWM
regions. We had to exclude 20 blocks stained with LFB
from the analysis because of their not comparable stain-
ing intensity for color deconvolution. Again, all MRI
parameters but FA correlated with LFB-myelin content
(in the order: MTR rho = 0.63, qT1 rho = �0.60, RD
rho = �0.60, MWF rho = 0.51, QSM rho = �0.41;
p < 0.01 for all parameters) (Figure 4). However, linear
mixed-effect models did not show any significant associa-
tion between MRI and LFB myelin content (Table S2).

3.2.2 | Axonal content

Regarding the analysis of axonal content by means of
immunofluorescence for neurofilament (NF), we could
include 39 lesions (6 remyelinated, 10 inactive, 19 chronic
active, 4 active lesions) versus 39 NAWM regions. FA cor-
related with neurofilament immunoreactivity (rho = 0.49,
p < 0.01), followed by MWF (rho = 0.27, p < 0.01)
(Figure 5). In both linear mixed-effect models, FA and
MWF exhibited an association with axonal content, which
was similar in lesions and NAWM (Table S3).

3.2.3 | Astrocyte immunoreactivity

All qMRI measures except for FA showed moderate
to small correlations with astrocyte immunoreactivity
(in the order: qT1 rho = 0.64, RD rho = 0.63, MWF

rho = �0.53, MTR rho = �0.59, QSM rho = 0.34;
p < 0.01 for all parameters), (Figure 5).

MWF was the only parameter associated with astro-
cyte immunoreactivity in lesions, and this association
was independent from experimental conditions and
sampling location (Table S4).

All lesion types (active, chronic active, inactive and
extensive-remyelinated) showed astrocyte immunoreacti-
vity in comparison to NAWM areas, p < 0.001 (Figure 6).

4 | DISCUSSION

The identification of surrogate markers for remyelination
represents one major unmet need for both the develop-
ment of remyelinating and restorative therapies in MS
patients, and for the stratification of patients that might
most benefit of reparative strategies.

In this work, we have studied six qMRI measures that
theoretically exhibit differential sensitivity and specificity
to myelin, axon, and cells characteristics.21

Our data show that MWF and MTR best predict a
lesion to be extensively-remyelinated, whereas MWF,
MTR and also qT1 could differentiate these lesions from
all the other histological types. However, the small sam-
ple size should be noted as a limitation of this study.
QSM did not show high discriminative value for remyeli-
nated lesions in the present study probably because, here,
we pooled together fully remyelinated and active, pre-
sumably still remyelinating lesions in one group, whereas
in the work of Rahmanzadeh R. et al.,24 we distinguished
fully remyelinated and probably actively remyelinating

F I GURE 6 Box plots for astrocyte immunoreactivity, as measured by GFAP immunofluorescence, in the different lesion types. A, MRI fluid-
attenuated inversion recovery (FLAIR) image; B, myelin basic protein (MBP) immunofluorescence; C, GFAP immunofluorescence
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lesions based on their qualitative appearance in QSM
(i.e. fully remyelinated lesions appeared there hypo/
isointense in QSM, whereas putative actively remyelinat-
ing lesions appeared hyperintense).

To date, there is no gold standard imaging biomarker
for remyelinated lesions.40 Different approaches have
been proposed so far based on the longitudinal changes
of myelin-sensitive measures such as MTR, MWF, RD,
qT1, which have been employed in phase II clinical
trials with disappointing results.41 Very recently, qT1 at
7 T MRI was proposed to track lesional myelination
changes over time in vivo in MS patients.42 Yet, while
some of these studies provided correlation analyses between
qMRI measures and myelin content in lesions,40–42 none of
them assessed the discriminative power of qMRI measures
for remyelinated lesions.

Our results confirm previous findings by showing
that MTR, MWF, and qT1 are capable to differentiate
remyelinated lesions from the others, but also extend
existing knowledge by supporting first evidence of the
superior discriminative capability of MTR and MWF for
extensively remyelinated lesions. These data therefore
pave the path to imaging strategies for assessing the
presence of remyelinated lesions in clinical studies and in
clinical practice.

As to chronic active lesions, from a qualitative per-
spective they may be identified using susceptibility-based
MRI, which captures their characteristic rim of activated
iron-laden microglia/macrophages (paramagnetic rim
lesions, PRL).9,15–17 PRL were shown to exhibit a more
destructive nature than lesions without a rim (encompass-
ing other chronic lesions but also remyelinated lesions),33

as well as a tendency to slowly grow over time.43 Interest-
ingly, our data provided new evidence that chronic active
(PRL) and chronic inactive lesions have a similar extent
of qMRI alterations, suggesting that these two lesion
types share a similar level of tissue destruction, although
the first lesion type has shown a dynamic towards expan-
sion of damage and the latter not.

Concerning the identification of active lesions, RD
and QSM proved to be the strongest discriminative mea-
sures. Also, our results suggested that active lesions
exhibit less microstructural damage than chronic active
and inactive lesions, but more than the damage observed
in extensively-remyelinated lesions. These data confirm
and extend previous knowledge that active lesions may
either efficiently repair or face further damage and pro-
gress to a chronic active and/or to an inactive lesion.44

Although all previously mentioned qMRI measures
exhibit some sensitivity to myelin, none of them is
myelin-specific.21 In fact, the MT contrast is also sensi-
tive to macromolecules found in the axonal and cellular
membranes and MTR exhibits a certain degree of T1 sen-
sitivity that further decreases its specificity to myelin.44

MWF is thought to be more specific than the MT-based
contrast for assessing myelin characteristics45; however, it
has been also shown that acquisition schemes for MWF,

and in particular the one based on Carr–Purcell–
Meiboom–Gill (CPMG) and Gradient And Spin Echo,
are sensitive to iron accumulation.46 The one applied in
this study, FAST-T2,33 is theoretically insensitive to iron
presence due to the short T2 that is achieved using a spi-
ral acquisition scheme. Nevertheless, since a cut-off of
20 ms is applied to define the pool of myelin-water, it
could be that some non-myelin water is also included in
the myelin pool. On the other hand, RD—a DTI para-
meter that was related to myelin content in animal
models of MS and in the human MS spinal cord47–49—
suffers from low specificity in areas of crossing fibers
and low signal to noise.50 Last, qT1 has been shown to
correlate with both myelin and axon content in the
CNS, but also with iron and cell accumulation.42,51

Numerous studies assessed the relationship between
each of the above-mentioned qMRI measures and myelin
content in the CNS tissue22,23,53; nevertheless, all these
studies have been performed in different experimental
conditions, so that their results are difficult to compare.
To date, only few previous work compared the relation-
ship of multiple qMRI measures with myelin
content,22,23,53 mostly in spinal cord tissue52 and brain
slices.19,30 Besides, results obtained in those studies are
sometimes contradictory23: for example, qT1 and qT2
were reported to show low correlation values with myelin
content in some studies54 and very high in others.30 Also
the reported correlation coefficient between MTR and
myelin is variable, ranging from 0.3655 to 0.71.20

To overcome these challenges, we planned a correla-
tion analysis between multiple qMRI measures and mea-
sures of myelin, axon, and astrocyte content using the
same experimental conditions.

Our data show that all qMRI measures but FA exhib-
ited moderate to high correlation with myelin content
(r = 0.58–0.79), although only MWF and RD were asso-
ciated to myelin content in both lesions and NAWM,
independently of the sample type (i.e., brain). Moreover,
MWF and RD were the only measures showing the same
association with myelin content in lesions and in the
NAWM, hereby confirming previous results obtained
with MWF56 and extending them to RD. The fact that
RD exhibits such an independent association with myelin
content is quite surprising but also very encouraging,
since this measure is easily derived from a clinically com-
patible MR sequence such as DTI. Nonetheless, as previ-
ously mentioned, RD should be used with caution
because its relationship with myelin may vary in regions
containing crossing fibers.51

When myelin content was assessed with a phospholipid-
staining (LFB) instead of a protein staining (MBP), we
could not observe any significant associations with MRI
measures in the linear mixed-effect models. Nevertheless,
we have to consider that this analysis was performed in a
smaller group of lesions than that on MBP-stained sections.

Regarding axon content, the intensity of NF-
immunofluorescence positively correlated with FA and
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—to a lesser extent—MWF. While the observed connec-
tion of FA with axonal content is in line with previous
studies,56,57 the association of MWF with the amount of
axons has not been previously described and may under-
lie the strong relationship between the presence of axons
and myelin in normal appearing tissue and MS lesions.

Last, we did not observe any significant associations
between qMRI and astrocyte immunoreactivity, which is
in line with some previous observations with single qMRI
parameters.19,30 However, when looking exclusively at
the lesion areas, we observed that MWF was positively
correlated with the presence of astrocytes, which may be
due to a possible association between these cells and the
remyelination process (Figure 6). Indeed, we have newly
observed an extensive presence of astrocytes in remyeli-
nated lesions: this appears to be in line with recent studies
indicating that astrocytes are key regulators for the
removal of damaged myelin through recruitment of
microglia, before remyelination can take place.58 This
finding might also explain why a completely remyelinated
lesion still exhibits a T2-hyperintensity in conventional
MRI images. Indeed, the accumulation of astrocytes
would increase the intracellular water pool with a conse-
quent increase in T2. Moreover, also a lower myelin con-
tent in those areas could play a role. Whether an increase
in myelin water in remyelinated axons might contribute to
the hyperintense signal in these lesions is however still
unclear. In future studies, we will investigate more in detail
the cellular composition of the remyelinated lesions and
evaluate if there is any relationship between the astrocyte
content and the presence of microglia. To note is also that
both inactive and chronic active lesions showed a high
astrocyte-content that was not related to remyelinating
activity, confirming hereby recent knowledge.59,60

MR-histology studies are complex and require tar-
geted expertise in both postmortem MRI and histopa-
thology to achieve optimal data acquisition and pairing
of information obtained from imaging and histological
data. In this work, we minimized the challenges of data
registration by using the approach proposed by Luciano
et al.26 Secondly, we have scanned the whole brain and
not brain specimens or slices, therefore providing a com-
prehensive view of MS pathology. However, although
the obtained sample size was adequate to explore the pri-
mary hypotheses, it was in part limited for secondary
analyses (i.e., active lesions, LFB). In addition, the histo-
logical analysis performed did not allow to assess the
presence of myelin structural abnormalities (e.g. swell-
ings, blisters),62 which might have influenced the applied
qMRI measures.

In conclusion, we expanded the evidence that MWF
and MTR are useful markers of remyelination. Our
results showed that also DTI-derived measures may well
serve the purpose of measuring myelin in the brain of MS
patients. Moreover, we provided evidence of an extensive
astrogliosis in all lesion types, even in remyelinated
ones, suggesting a potential role of astrocytes in myelin

regeneration. Future studies should aim at further char-
acterizing astrocyte function in the different lesion types
and shed light on their role in lesion initiation and
resolution.
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